Das kannst schon so machen, ist dann aber... *

TALES OF DAILY CHECK_MK USAGE

* Lost in translation
Network – All Interfaces? Not really!?

- All Interfaces deserve to be monitored.
- Customers often say: „No, I‘m not interested in monitoring all interfaces“ - Yes! They just don‘t know their errors yet.
- Pro-Tip: No errors in a LAN are acceptable! And they can be monitored and addressed in some simple steps.
Network

• But my network doesn’t have errors!
Don’t be too sure
Network – How to monitor?

• By „Description“ or by „Alias“ - depends on vendor

• All states!
Network – How to monitor?

- All types!
Network – OK fine, but what about the access ports…?

- Access ports are allowed to change state (up/down)
- Access ports are allowed to change speed as well, e.g. 1Gbit/s while powered on, 10Mbit/s in WOL mode
Network – OK fine, but what about the access ports...?

- But access ports are not allowed to have errors!
- How to distinguish access from non-access ports in monitoring?
- Port naming schemes and appropriate rules! Remember: „by Description/by Alias“
Network – Distinguish access from non-access

- Name important interfaces in your switches/routers, e.g.:
 - Uplink core X
 - Uplink MPLS 10 Mbit
 - ap23
 - esx-vmnic0

- Don’t name your access ports, unless you are able and willingly to handle all changes

- It doesn’t matter what’s your naming scheme, but let it be consistent → efficient Check_MK ruleset!
Network – Distinguish access from non-access - Rules

New rule: Network interfaces and switch ports

- Levels for error rates
 - Operating speed
 - Ignore speed
 - Explicit hosts
 - Port Specification

- Operational state
 - Ignore the operational state

- Map operational states
- Assumed input speed
- Assumed output speed
- Measurement unit
- Change infotext in check output
- Used bandwidth (minimum or maximum traffic)
- Non-unicast packet rates
- Absolute levels for discards rates
- Average values

\d+
Regex for several digits, translates to e.g. „Interface 000034“ aka Port doesn’t have a name
Network – another takeaway

- Note: The default levels of 0.01%/0.1% (WARN/CRIT) for interface errors make sense! Don’t change them! Never*
- * OK sometimes as some WLAN-vendors pass errors of the radio interface to the counters...
Network – why?

- If you allow Check_MK to search, you’ll find:
 - broken patch- and installation cables
 - dirty fiber optics
 - configuration error: one sided, deactivated Auto-Negotiation, very common → It’s a protocol and not electro-magic, administrators tend not to know that :-(
 → Duplex Mismatch!!!11!
Network – why?

- If you allow Check_MK to search, you’ll find:
 - Configuration error: Trunks LACP vs. static
 - broken firmware (Printer, yes, really)
 - overloaded embedded systems/IP stacks
Network – why?

• If you allow Check_MK to search, you’ll find:
 <add your network phenomena here>
Network – real life example (1)

• Errors on an uplink interface in a metro network → single mode fiber optic

• Analysis: CRC error, on one side of the line, receiving direction (of course)

• Impact: iperf measurements far away from GBit/s
Try and error: change of patch cables, CRC errors disappear immediately, iperf reaches up to 1 Gbit/s

Take away: Clean your optics/cables. Every time before you plug in. Always. Don’t discuss. Simply do it! Yes, also with fibre channel!
Network – real life example (2)

- Check_MK rollout without support of the local admin
- Massive errors on one network interface – OK, let me look later...
- Later: Oh, another interface error, this time on a server – is there a connection?
Network – real life example (2)

- Configuration of port names and also trunk/channel names (consistent naming schemes are nice little things) → all related ports are one below the other in the view

- Ohh, what’s that? Trunk member one with 1Gbit/s
 Trunk member two with 100Mbit/s
Network – real life example (2)

- Check of configuration: OK
- Plug out, plug in 100Mbit/s – mhh
- Plug out, plug in 100Mbit/s – grrr
Network – real life example (2)

- Even later: Accounting lady comes to the admin:

- Lady: „Hans*, what did you do?“
- Hans: „Ehm, ehh, nothing? Why?“
- Lady: „SAP is suddenly lightning fast!“

* name changed, but known to the author
Network – real life example (2)

- Conclusions:
 Check your 5$ patch cables before:
 - you make the SAP consultant rich
 - you upgrade RAM/CPU or even the whole server

- Check_MK does that for you. Automagically. Reliable. If you allow it to do
Network – real life example (3)

- Switch interface between firewall / MPLS router has errors
- Analysis: Collisions, 10Mbit/s half-duplex
- Question to the customer: „Didn‘t you say you have a 34Mbit/s line?“ - „Yes, we bought an upgrade from 10 Mbit/s 1 year ago...“
- Calling the telco... suddenly autonegotiation is on...
- So they increased traffic shaping in the backend but forgot to set the interface from 10/full to 100/full
Network – real life example (3)

- Take away (mostly for the German audience): Deutsche Telekom doesn’t like autonegotiation. Almost always turned off on business routers.
- And they don’t tell the customer. Conspiration theory: Saves bandwidth
- Colt behaves similar
- Result: I can find such an error in ~50% of all Check_MK roll-outs in Germany
Network – further real life examples

• Duplex mismatch on an 10Mbit/s “Ethernet Connect” line to a remote office –> less than 1Mbit/s throughput

• „Ethernet Connect“ is a product of which telco? <You name it>
Network – further real life examples

- Error on a Cisco Switch, all links are affected by collisions
- All ports are 100FX optical lines and set to half-duplex.
- Ehmm, you can do that, but probably you shouldn’t. Or why defines FX standard separate send and receive fibers?
Network - duplex-mismatch-take-away

- Duplex mismatches are common.
- Admins often do not detect it by manual checking and underestimate the problem:
A duplex mismatch degrades a 10Mbit/s line to something around 200Kbit/s
Network – real life example (4)

- Company with 20 locations Europe-wide. Low bandwidth MPLS connections → „country-locations“
- ISP doesn’t grant SNMP access, says: „Our monitoring says, that you need more bandwidth – please insert coin“
- Conspiration theory: Companies have captalistic motivations
Network – real life example (4)

• Solution: Naming scheme for the Switch to MPLS Router interfaces, e.g.
 MPLS 2Mbit
 ADSL 16Mbit
 etc.

• Interface rules matching that name, including speed, upper limits, measurement unit, averaging
Network – real life example (4)
Network – real life example (4)

- Two weeks later: Alarm! More than 95% bandwidth usage since 1 hour!
- Analysis of the flows with NTOP-ng: ssh traffic from an IPSec peer
- Students of the partner university didn’t know the limitation of 2 Mbit/s of that location
- `<scp -l limit>` is your friend
Network – real life example (5)

- WLAN configuration gets updated, radios are now allowed to use N standard, up to 300 Mbit/s
- Uhmm, the LAN interfaces of the access points are connected to 100Mbit/s switch interfaces, what could possibly go wrong...?
Network - real life example (5)
Network – further real life examples

- Errors on all switch interfaces with connected UTAX printers. (re-branded Kyocera printers)
- Reason: unclear
- Solution: replacing UTAX firmware with the original Kyocera firmware
Network – further real life examples

- Packet-loss, timeouts, slow printouts
- Analysis: ~2Mbit/s basic load on all switchports!?
- Wireshark: Broadcast, Multicast caused by > 13,000 MAC addresses in one VLAN!
- Not so optimal: Embedded TCP/IP stack has to check all multicast packets before it can decide to drop.
- Even 1 core of a 8 core Xeon CPU was 100% busy: avahi-daemon handling multicast requests
- Solution: hang the DJ, VLAN segmentation is your friend
Network – further real life examples

- 10Mbit/s WAN: Bandwidth/packet loss OK, but latency up to DNS timeouts
- Analysis with the Check_MK metrics – packet rate: 10thousands of packets! Small sized as used bandwidth is low.
- Further analysis: POP3 mail fetcher goes wild, as 100MB/Mail are allowed on ISP side, but just 10MB on Exchange side, mail gets refused. Result: Interprets it as network error and reduces packet size.
- Quality programming meets quality administration
Network – further real life examples

- Periodic errors on all switches.
- Analysis: Giants. But only where the VLAN named “WLAN-Mgmt“ is connected.
- Reason: Aruba access points configured to use „client data tunnel“ - needs jumbo frame support in that VLAN.
- Read the specs. Or use Check_MK.
Network – further real life examples

• Switch interface counters stop working (seen on some HP Procurve firmwares)
• Without check_mk: show interfaces - „Wow looks great, no errors!“
• show interfaces is a point in time view, without any time correlation
• Better monitor your interfaces. Yes. All. Do it. Doesn’t hurt.
Network – further real life examples

- Cisco core switch, configured as „virtual stackwise“
- Periodic errors on all connected edge/access switches:
Network – further real life examples

- Exact same error count on all connected switches
- CRC Errors, aka broken packets.
- You had one job...
Whats good for a network...

- ...can’t be bad for Fibre Channel
- Works the same: Port names, error rates and so on
- A dirty optic / cable is even more thrilling than in IP networks (OK, OK packet loss in iSCSI networks is also a nightmare)
Beyond the network

• Some other Check_MK best practice tips
• ...and stories
Server - CPU

- Create this rule, always. Don’t discuss. Except when your customers is mining bitcoins or so.

New rule: CPU utilization for simple devices
Server -CPU - real life example (1)

- Continuous high CPU load on one core (Domain controller)
- Customer: „Yes, I know, I need to replace the hardware“
- Some analysis later: Backup Exec going crazy, wants to write a log to c:\program files (x86)\xxx and doesn‘t have permission → known bug
- Bugfix installed, CPU down to almost 0, ~80 Watt less power consumption according to ILO monitoring.
Server -CPU - real life example (2)

- Citrix Logon-times far beyond one minute
- Customer: „We have a network issue!“
- Analysis: No network errors at all in Check_MK. But CPU of file server goes high. Periodically, especially in the morning!
- Maybe just one CPU for a file server is a bad idea?
- 4 CPUs and the „network problem“ is gone
ESX Server - Snapshots

- Technical backgrounds of snapshots often unknown by customers
- Old, forgotten snapshots are evil, as snapshots are redo logs that have to be replayed/committed during delete
- Consumes up to the same space as the configured VMDK. Dangerous on almost full LUNs!
- I/O fun for the storage backend during deletion
- Some snapshot based backup solutions tend to „forget“ snapshots after failed/crashed jobs
ESX Server - Snapshots

- So don’t discuss. Set the following rule. Always.
- If you need to restore a snapshot older than 2 days or so, you are most commonly already in trouble.
ESX Server – Snapshots – real life example

- Check_MK roll-out in a relatively new, big, complicated call center installation
- Almost all VMs have snapshots > 200 days
- Storage space is up to be exhausted!
- Check_MK is detecting over-provisioning!
ESX Server – Snapshots – real life example

- Monitoring admin talks with several(!) field engineers:
 “Yeah, after I finished my setup I did a snapshot. So if one of my colleagues breaks my machine one day I can go back to that point.”[sic]
Processes and Services

- Not only for monitoring, but also to control deployments
- "Is the <AV agent/Backup agent/whatever> everywhere installed?"
- "Yes sure, we don’t need that rule:"
Processes and Services
• Manual Checks / Windows Services

• „Uhm, sorry, I forgot that server...“
Processes and Services

• Similar rules can be used to e.g.:
 - Teamviewer service should be installed but not running
 - Monitor all services that are non standard → Discover * auto/running, disable all standard Windows Services by „Disabled Services“ rule
Questions?

Contact:
alexander.wilms[at]bechtle.com